Package: TSLSTM 0.1.0

TSLSTM: Long Short Term Memory (LSTM) Model for Time Series Forecasting

The LSTM (Long Short-Term Memory) model is a Recurrent Neural Network (RNN) based architecture that is widely used for time series forecasting. Min-Max transformation has been used for data preparation. Here, we have used one LSTM layer as a simple LSTM model and a Dense layer is used as the output layer. Then, compile the model using the loss function, optimizer and metrics. This package is based on Keras and TensorFlow modules and the algorithm of Paul and Garai (2021) <doi:10.1007/s00500-021-06087-4>.

Authors:Dr. Ranjit Kumar Paul [aut, cre], Dr. Md Yeasin [aut]

TSLSTM_0.1.0.tar.gz
TSLSTM_0.1.0.zip(r-4.5)TSLSTM_0.1.0.zip(r-4.4)TSLSTM_0.1.0.zip(r-4.3)
TSLSTM_0.1.0.tgz(r-4.4-any)TSLSTM_0.1.0.tgz(r-4.3-any)
TSLSTM_0.1.0.tar.gz(r-4.5-noble)TSLSTM_0.1.0.tar.gz(r-4.4-noble)
TSLSTM_0.1.0.tgz(r-4.4-emscripten)TSLSTM_0.1.0.tgz(r-4.3-emscripten)
TSLSTM.pdf |TSLSTM.html
TSLSTM/json (API)

# Install 'TSLSTM' in R:
install.packages('TSLSTM', repos = c('https://ranjitstat.r-universe.dev', 'https://cloud.r-project.org'))

Peer review:

On CRAN:

This package does not link to any Github/Gitlab/R-forge repository. No issue tracker or development information is available.

1.48 score 1 packages 4 scripts 262 downloads 1 exports 80 dependencies

Last updated 3 years agofrom:276da206a1. Checks:OK: 7. Indexed: yes.

TargetResultDate
Doc / VignettesOKNov 22 2024
R-4.5-winOKNov 22 2024
R-4.5-linuxOKNov 22 2024
R-4.4-winOKNov 22 2024
R-4.4-macOKNov 22 2024
R-4.3-winOKNov 22 2024
R-4.3-macOKNov 22 2024

Exports:ts.lstm

Dependencies:askpassbackportsbase64encclicolorspaceconfigcurlfansifarverforecastfracdiffgenericsggplot2gluegreyboxgtableherehttrisobandjsonlitekeraslabelinglatticelifecyclelmtestmagrittrMAPAMASSMatrixmgcvmimemunsellnlmenloptrnnetopensslpillarpkgconfigplotrixpngpracmaprocessxpsquadprogquantmodR6rappdirsRColorBrewerRcppRcppArmadilloRcppTOMLreticulaterlangrprojrootrstudioapiscalessmoothstatmodsystensorflowtexregtfautographtfrunstibbletidyselecttimeDatetseriestsutilsTTRurcautf8vctrsviridisLitewhiskerwithrxtablextsyamlzeallotzoo