Package: WaveletRF 0.1.0

WaveletRF: Wavelet-RF Hybrid Model for Time Series Forecasting

The Wavelet Decomposition followed by Random Forest Regression (RF) models have been applied for time series forecasting. The maximum overlap discrete wavelet transform (MODWT) algorithm was chosen as it works for any length of the series. The series is first divided into training and testing sets. In each of the wavelet decomposed series, the supervised machine learning approach namely random forest was employed to train the model. This package also provides accuracy metrics in the form of Root Mean Square Error (RMSE) and Mean Absolute Prediction Error (MAPE). This package is based on the algorithm of Ding et al. (2021) <doi:10.1007/s11356-020-12298-3>.

Authors:Ranjit Kumar Paul [aut, cre], Md Yeasin [aut]

WaveletRF_0.1.0.tar.gz
WaveletRF_0.1.0.zip(r-4.5)WaveletRF_0.1.0.zip(r-4.4)WaveletRF_0.1.0.zip(r-4.3)
WaveletRF_0.1.0.tgz(r-4.4-any)WaveletRF_0.1.0.tgz(r-4.3-any)
WaveletRF_0.1.0.tar.gz(r-4.5-noble)WaveletRF_0.1.0.tar.gz(r-4.4-noble)
WaveletRF_0.1.0.tgz(r-4.4-emscripten)WaveletRF_0.1.0.tgz(r-4.3-emscripten)
WaveletRF.pdf |WaveletRF.html
WaveletRF/json (API)

# Install 'WaveletRF' in R:
install.packages('WaveletRF', repos = c('https://ranjitstat.r-universe.dev', 'https://cloud.r-project.org'))

Peer review:

On CRAN:

This package does not link to any Github/Gitlab/R-forge repository. No issue tracker or development information is available.

1.00 score 116 downloads 2 exports 62 dependencies

Last updated 3 years agofrom:eaaa25b1c1. Checks:OK: 7. Indexed: yes.

TargetResultDate
Doc / VignettesOKOct 31 2024
R-4.5-winOKOct 31 2024
R-4.5-linuxOKOct 31 2024
R-4.4-winOKOct 31 2024
R-4.4-macOKOct 31 2024
R-4.3-winOKOct 31 2024
R-4.3-macOKOct 31 2024

Exports:WaveletFittingWaveletFittingRF

Dependencies:askpassclicolorspacecurlfansifarverforecastfracdiffgenericsggplot2gluegreyboxgtablehttrisobandjsonlitelabelinglatticelifecyclelmtestmagrittrMAPAMASSMatrixmgcvmimemunsellnlmenloptrnnetopensslpillarpkgconfigplotrixpracmaquadprogquantmodR6randomForestRColorBrewerRcppRcppArmadillorlangscalessmoothstatmodsystexregtibbletimeDatetseriestsutilsTTRurcautf8vctrsviridisLitewaveletswithrxtablextszoo