Package: WaveletGBM 0.1.0

WaveletGBM: Wavelet Based Gradient Boosting Method

Wavelet decomposition method is very useful for modelling noisy time series data. Wavelet decomposition using 'haar' algorithm has been implemented to developed hybrid Wavelet GBM (Gradient Boosting Method) model for time series forecasting using algorithm by Anjoy and Paul (2017) <doi:10.1007/s00521-017-3289-9>.

Authors:Dr. Ranjit Kumar Paul [aut, cre], Dr. Md Yeasin [aut]

WaveletGBM_0.1.0.tar.gz
WaveletGBM_0.1.0.zip(r-4.5)WaveletGBM_0.1.0.zip(r-4.4)WaveletGBM_0.1.0.zip(r-4.3)
WaveletGBM_0.1.0.tgz(r-4.4-any)WaveletGBM_0.1.0.tgz(r-4.3-any)
WaveletGBM_0.1.0.tar.gz(r-4.5-noble)WaveletGBM_0.1.0.tar.gz(r-4.4-noble)
WaveletGBM_0.1.0.tgz(r-4.4-emscripten)WaveletGBM_0.1.0.tgz(r-4.3-emscripten)
WaveletGBM.pdf |WaveletGBM.html
WaveletGBM/json (API)

# Install 'WaveletGBM' in R:
install.packages('WaveletGBM', repos = c('https://ranjitstat.r-universe.dev', 'https://cloud.r-project.org'))

Peer review:

On CRAN:

This package does not link to any Github/Gitlab/R-forge repository. No issue tracker or development information is available.

1.00 score 144 downloads 1 exports 92 dependencies

Last updated 2 years agofrom:3639d59be4. Checks:OK: 7. Indexed: yes.

TargetResultDate
Doc / VignettesOKOct 29 2024
R-4.5-winOKOct 29 2024
R-4.5-linuxOKOct 29 2024
R-4.4-winOKOct 29 2024
R-4.4-macOKOct 29 2024
R-4.3-winOKOct 29 2024
R-4.3-macOKOct 29 2024

Exports:WaveletGBM

Dependencies:caretcaretForecastclasscliclockcodetoolscolorspacecpp11curldata.tablediagramdigestdplyre1071fansifarverforeachforecastfracdifffuturefuture.applygbmgenericsggplot2globalsgluegowergtablehardhatipredisobanditeratorsjsonliteKernSmoothlabelinglatticelavalifecyclelistenvlmtestlubridatemagrittrMASSMatrixMetricsmgcvModelMetricsmunsellnlmennetnumDerivparallellypillarpkgconfigplyrpROCprodlimprogressrproxypurrrquadprogquantmodR6RColorBrewerRcppRcppArmadillorecipesreshape2rlangrpartscalesshapeSQUAREMstringistringrsurvivaltibbletidyrtidyselecttimechangetimeDatetseriesTTRtzdburcautf8vctrsviridisLitewaveletswithrxtszoo