Title: | Wavelet-ARIMA Model for Time Series Forecasting |
---|---|
Description: | Noise in the time-series data significantly affects the accuracy of the ARIMA model. Wavelet transformation decomposes the time series data into subcomponents to reduce the noise and help to improve the model performance. The wavelet-ARIMA model can achieve higher prediction accuracy than the traditional ARIMA model. This package provides Wavelet-ARIMA model for time series forecasting based on the algorithm by Aminghafari and Poggi (2012) and Paul and Anjoy (2018) <doi:10.1142/S0219691307002002> <doi:10.1007/s00704-017-2271-x>. |
Authors: | Dr. Ranjit Kumar Paul [aut, cre], Mr. Sandipan Samanta [aut], Dr. Md Yeasin [aut] |
Maintainer: | Dr. Ranjit Kumar Paul <[email protected]> |
License: | GPL-3 |
Version: | 0.1.2 |
Built: | 2025-02-10 03:28:58 UTC |
Source: | https://github.com/cran/WaveletArima |
Transforms the time series data by using hybrid MODWT algorithm.
WaveletFitting( ts, WFilter = "haar", Wvlevels, bndry = "periodic", FFlag = TRUE )
WaveletFitting( ts, WFilter = "haar", Wvlevels, bndry = "periodic", FFlag = TRUE )
ts |
Univariate time series |
WFilter |
Wavelet filter use in the decomposition |
Wvlevels |
The level of wavelet decomposition |
bndry |
The boundary condition of wavelet decomposition:'periodic' or 'reflection' |
FFlag |
The FastFlag condition of wavelet decomposition: True or False |
WaveletSeries - The wavelet trasnform of the series
Aminghafari, M. and Poggi, J.M. 2007. Forecasting time series using wavelets. Internationa Journal of Wavelets, Multiresolution and Inforamtion Processing, 5, 709 to 724
Percival D. B. and Walden A. T. 2000. Wavelet Methods for Time-Series Analysis. Cambridge Univ. Press, U.K.
Paul R. K., Prajneshu and Ghosh H. 2013. Wavelet Frequency Domain Approach for Modelling and Forecasting of Indian Monsoon Rainfall Time-Series Data. Journal of the Indian society of agricultural statistics, 67, 319 to 327.
data<-rnorm(100,mean=100,sd=50) WaveletFitting(ts=data,Wvlevels=3,WFilter='haar',bndry='periodic',FFlag=TRUE)
data<-rnorm(100,mean=100,sd=50) WaveletFitting(ts=data,Wvlevels=3,WFilter='haar',bndry='periodic',FFlag=TRUE)
Fits the time series data by using hybrid Wavelet-ARIMA algorithm.
WaveletFittingarma( ts, filter = "haar", Waveletlevels, boundary = "periodic", FastFlag = TRUE, MaxARParam, MaxMAParam, NForecast )
WaveletFittingarma( ts, filter = "haar", Waveletlevels, boundary = "periodic", FastFlag = TRUE, MaxARParam, MaxMAParam, NForecast )
ts |
univariate time series |
filter |
Wavelet filter use in the decomposition |
Waveletlevels |
The level of wavelet decomposition |
boundary |
The boundary condition of wavelet decomposition |
FastFlag |
The FastFlag condition of wavelet decomposition: True or False |
MaxARParam |
The maximum AR order for auto.arima |
MaxMAParam |
The maximum MA order for auto.arima |
NForecast |
The forecast horizon: A positive integer |
Finalforecast - Forecasted value
FinalPrediction - Predicted value of train data
Aminghafari, M. and Poggi, J.M. 2012. Nonstationary time series forecasting using wavelets and kernel smoothing. Communications in Statistics-Theory and Methods, 41(3),485-499.
Paul, R.K. A and Anjoy, P. 2018. Modeling fractionally integrated maximum temperature series in India in presence of structural break. Theory and Applied Climatology 134, 241–249.
N <- 100 PHI <- 0.2 THETA <- 0.1 SD <- 1 M <- 0 D <- 0.2 Seed <- 123 set.seed(Seed) Sim.Series <- fracdiff::fracdiff.sim(n = N,ar=c(PHI),ma=c(THETA),d=D,rand.gen =rnorm,sd=SD,mu=M) simts <- as.ts(Sim.Series$series) WaveletForecast<-WaveletFittingarma(ts=simts,filter ='la8',Waveletlevels=floor(log(length(simts))), MaxARParam=5,MaxMAParam=5,NForecast=5)
N <- 100 PHI <- 0.2 THETA <- 0.1 SD <- 1 M <- 0 D <- 0.2 Seed <- 123 set.seed(Seed) Sim.Series <- fracdiff::fracdiff.sim(n = N,ar=c(PHI),ma=c(THETA),d=D,rand.gen =rnorm,sd=SD,mu=M) simts <- as.ts(Sim.Series$series) WaveletForecast<-WaveletFittingarma(ts=simts,filter ='la8',Waveletlevels=floor(log(length(simts))), MaxARParam=5,MaxMAParam=5,NForecast=5)