Package: UEI 0.1.0

UEI: Compute Uniform Error Index

Uniform Error Index is the weighted average of different error measures. Uniform Error Index utilizes output from different error function and gives more robust and stable error values. This package has been developed to compute Uniform Error Index from ten different loss function like Error Square, Square of Square Error, Quasi Likelihood Error, LogR-Square, Absolute Error, Absolute Square Error etc. The weights are determined using Principal Component Analysis (PCA) algorithm of Yeasin and Paul (2024) <doi:10.1007/s11227-023-05542-3>.

Authors:Mr. Ankit Kumar Singh [aut], Dr. Ranjit Kumar Paul [aut, cre], Dr. Md Yeasin [aut], Ms. Anita Sarkar [aut], Dr. Amrit Kumar Paul [aut]

UEI_0.1.0.tar.gz
UEI_0.1.0.zip(r-4.5)UEI_0.1.0.zip(r-4.4)UEI_0.1.0.zip(r-4.3)
UEI_0.1.0.tgz(r-4.4-any)UEI_0.1.0.tgz(r-4.3-any)
UEI_0.1.0.tar.gz(r-4.5-noble)UEI_0.1.0.tar.gz(r-4.4-noble)
UEI_0.1.0.tgz(r-4.4-emscripten)UEI_0.1.0.tgz(r-4.3-emscripten)
UEI.pdf |UEI.html
UEI/json (API)

# Install 'UEI' in R:
install.packages('UEI', repos = c('https://ranjitstat.r-universe.dev', 'https://cloud.r-project.org'))

Peer review:

On CRAN:

This package does not link to any Github/Gitlab/R-forge repository. No issue tracker or development information is available.

1.00 score 2 scripts 113 downloads 1 exports 112 dependencies

Last updated 4 months agofrom:1d8f3515dd. Checks:OK: 7. Indexed: yes.

TargetResultDate
Doc / VignettesOKOct 30 2024
R-4.5-winOKOct 30 2024
R-4.5-linuxOKOct 30 2024
R-4.4-winOKOct 30 2024
R-4.4-macOKOct 30 2024
R-4.3-winOKOct 30 2024
R-4.3-macOKOct 30 2024

Exports:UEI

Dependencies:abindbackportsbase64encbootbroombslibcachemcarcarDatacliclustercolorspacecorrplotcowplotcpp11crosstalkdendextendDerivdigestdoBydplyrDTellipseemmeansestimabilityevaluatefactoextraFactoMineRfansifarverfastmapflashClustfontawesomeFormulafsgenericsggplot2ggpubrggrepelggsciggsignifgluegridExtragtablehighrhtmltoolshtmlwidgetshttpuvisobandjquerylibjsonliteknitrlabelinglaterlatticelazyevalleapslifecyclelme4magrittrMASSMatrixMatrixModelsmemoiseMetricsmgcvmicrobenchmarkmimeminqamodelrmultcompViewmunsellmvtnormnlmenloptrnnetnumDerivpbkrtestpillarpkgconfigplyrpolynompromisespurrrquantregR6rappdirsRColorBrewerRcppRcppEigenreshape2rlangrmarkdownrstatixsassscalesscatterplot3dSparseMstringistringrsurvivaltibbletidyrtidyselecttinytexutf8vctrsviridisviridisLitewithrxfunyaml