Package: EEML 0.1.1

EEML: Ensemble Explainable Machine Learning Models

We introduced a novel ensemble-based explainable machine learning model using Model Confidence Set (MCS) and two stage Technique for Order of Preference by Similarity to Ideal Solution (TOPSIS) algorithm. The model combined the predictive capabilities of different machine-learning models and integrates the interpretability of explainability methods. To develop the proposed algorithm, a two-stage Technique for Order of Preference by Similarity to Ideal Solution (TOPSIS) framework was employed. The package has been developed using the algorithm of Paul et al. (2023) <doi:10.1007/s40009-023-01218-x> and Yeasin and Paul (2024) <doi:10.1007/s11227-023-05542-3>.

Authors:Dr. Md Yeasin [aut], Dr. Ranjit Kumar Paul [aut, cre], Dr. Dipanwita Haldar [aut]

EEML_0.1.1.tar.gz
EEML_0.1.1.zip(r-4.5)EEML_0.1.1.zip(r-4.4)EEML_0.1.1.zip(r-4.3)
EEML_0.1.1.tgz(r-4.5-any)EEML_0.1.1.tgz(r-4.4-any)EEML_0.1.1.tgz(r-4.3-any)
EEML_0.1.1.tar.gz(r-4.5-noble)EEML_0.1.1.tar.gz(r-4.4-noble)
EEML_0.1.1.tgz(r-4.4-emscripten)EEML_0.1.1.tgz(r-4.3-emscripten)
EEML.pdf |EEML.html
EEML/json (API)

# Install 'EEML' in R:
install.packages('EEML', repos = c('https://ranjitstat.r-universe.dev', 'https://cloud.r-project.org'))

On CRAN:

Conda:

This package does not link to any Github/Gitlab/R-forge repository. No issue tracker or development information is available.

1.30 score 235 downloads 3 exports 4 dependencies

Last updated 8 months agofrom:c8adedecd7. Checks:9 OK. Indexed: yes.

TargetResultLatest binary
Doc / VignettesOKMar 19 2025
R-4.5-winOKMar 19 2025
R-4.5-macOKMar 19 2025
R-4.5-linuxOKMar 19 2025
R-4.4-winOKMar 19 2025
R-4.4-macOKMar 19 2025
R-4.4-linuxOKMar 19 2025
R-4.3-winOKMar 19 2025
R-4.3-macOKMar 19 2025

Exports:EEMLModelSelWeight

Dependencies:MCSmetaheuristicOpttopsisWeightedEnsemble